The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Johannes Edvardsson

Johannes Edvardsson

Researcher

Johannes Edvardsson

The timing of wood formation in peatland trees as obtained with different approaches

Author

  • L. Francon
  • J. Edvardsson
  • C. Corona
  • M. Stoffel

Summary, in English

Dendrometers offer valuable insights into how tree growth responds to climatic variables and physiological processes over the course of a year. Yet, their applicability to extremely slow-growing trees, such as those in peatlands, has been limited due to the intricate and slow nature of growth, therefore rendering interpretation of results complex. In this study, we conducted a comprehensive monitoring of tree wood formation in both peatland and mineral soil ecosystems in southern Sweden (58.37 N, 12.17 E, 75 m asl) in 2021 and 2022, using both band and point dendrometers. To verify and validate the dendrometer data, we also sampled microcores every two weeks during both growing seasons. We find that peatland trees grow at approximately 30 % the rate of their neighbors on mineral soils. The onset of growth among peatland trees typically occurs between mid-May and early June, consistently lagging the start of the growing season in trees on mineral soils by one to three weeks. Notably, growth peaks are synchronized across peatland trees and coincide with the summer solstice. Both types of dendrometers exhibit varying degrees of accuracy depending on the phenological stages measured. They perform well in identifying growth onset and peak but are less effective at detecting growth cessation. Point dendrometers demonstrate superior accuracy as they better capture daily irreversible growth increments. In the case of band dendrometers, growth increments are obscured by greater reversible fluctuations in dead bark tissues. However, they remain valuable for tracking the wood phenology of trees with growth rates exceeding 2 mm/year. Based on our results, for an effective tree monitoring in peatlands, we strongly recommend (1) using point dendrometers and (2) removing the dead bark tissues on monitored trees.

Department/s

  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Quaternary Sciences

Publishing year

2024-06

Language

English

Publication/Series

Dendrochronologia

Volume

85

Document type

Journal article

Publisher

Elsevier

Topic

  • Environmental Sciences related to Agriculture and Land-use

Keywords

  • Dendrometer
  • Microcore
  • Peatland
  • Pinus sylvestris
  • Wood formation
  • Wood phenology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1125-7865